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We extend the SU�4� model �Guidry et al., Phys. Rev. B 63, 134516 �2001�; Wu et al., Phys. Rev. B 67,
014515 �2003�; Guidry et al., Phys. Rev. B 70, 184501 �2004�; Sun et al., Phys. Rev. B 73, 134519 �2006�;
Sun et al., Phys. Rev. B 75, 134511 �2007�� for high-Tc superconductivity to an SU�4�k model that permits
explicit momentum �k� dependence in predicted observables. We derive and solve gap equations that depend on
k, temperature, and doping from the SU�4�k coherent states, and we show that the present SU�4�k model
reduces to the original SU�4� model for observables that do not depend explicitly on momentum. The results
of the SU�4�k model are relevant for experiments such as angle-resolved photoemission spectroscopy �ARPES�
that detect explicitly k-dependent properties. The present SU�4�k model describes quantitatively the pseudogap
temperature scale and may explain why the ARPES-measured T� along the antinodal direction is larger than the
other measurements that do not resolve momentum. It also provides an immediate microscopic explanation for
Fermi arcs observed in the pseudogap region. In addition, the model leads to a prediction that even in the
underdoped regime, there exist doping-dependent windows around nodal points in the k space, where antifer-
romagnetism may be completely suppressed for all doping fractions, permitting pure superconducting states to
exist.
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I. INTRODUCTION

The mechanism that leads to high-temperature supercon-
ductivity �SC� in the cuprates remains an open question de-
spite intense study for the past two decades. Although the
field has been challenged by many high-quality data from
different types of measurement, there is no uniformly ac-
cepted theoretical picture that can offer a unified and consis-
tent description for these data. It is often believed that un-
derlying physics can be understood in terms of individual
particles interacting through appropriately chosen interac-
tions. However, even with greatly simplified Hamiltonians,
describing collective motion in these strongly correlated
many-electron systems has had only limited success. This
has led some authors1 to conclude that the many-body cor-
relations in cuprates are so strong that dynamics may no
longer be described meaningfully in terms of electrons and
must be described instead in terms of new effective building
blocks that fractionalize spin and charge.

Simplicity is a kind of beauty in physics. Even if one
could solve the problem with the help of large-scale numeri-
cal calculations, such a practice may not be interesting be-
cause physics can be completely buried in the numerous con-
figurations used in the calculation. On the other hand,
alternative approaches to many-body problems have been
proposed. One is the method of fermion dynamical
symmetries.2 This approach is based on the fact that collec-
tive motions in strongly correlated many-body systems are
often governed by only a few collective degrees of freedom,
and a quantum system exhibiting dynamical symmetries usu-
ally contains two or more competing collective modes. Once
these degrees of freedom are identified and properly incor-
porated into a model, the problem may be considerably sim-
plified and, most importantly, the physics in such approaches
may become transparent.

This is the philosophy where the SU�4� model of high-
temperature superconductivity3–7 is based on. For cuprate
systems we have proposed that the most relevant collective
degrees of freedom are d-wave SC and antiferromagnetism
�AF�, and that coherent pairs �not individual particles�
formed from two electrons �or holes� centered on adjacent
lattice sites are appropriate dynamical building blocks of the
wave function. The choice of this space, which is small in
size but rich in physics, corresponds to a physically moti-
vated truncation of the huge Hilbert space corresponding to
the original problem.

It has been found3 that the spin-singlet �D� and the spin-
triplet ��� pair operators, when supplemented with the
particle-hole-like operators for staggered magnetization �Q�,
spin �S�, and charge constitute a 16-element operator set that
is closed under a U�4��U�1��SU�4� algebra if the d-wave
form factor g�k� in D and � pair operators is replaced by
sgn�g�k��. The U�1� factor corresponds to a charge-density
wave that is independent of the SU�4� subspace because of
the direct product. This implies that in the minimal U�4�
model charge-density waves do not influence the AF-SC
competition in lowest order and our discussions have been
focused in the SU�4� subspace with its coherent-state
approximation.3,4 It has been further discovered5 that the
SU�4� symmetry is a consequence of non-double-
occupancy—the constraint that each lattice site cannot have
more than one valence electron. This suggests a fundamental
relationship between SU�4� symmetry and Mott-insulator
normal states at half filling for cuprate superconductors.

Thus, the SU�4� model has ingredients of competing AF
and SC modes, d-wave D and � pairs �entering as “pre-
formed pairs” that are mixtures of the two kinds of paired
states under the SU�4� constraint6� in wave functions, and
non-double-occupancy imposed by the symmetry.5 All of
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these appear to be relevant for the physics of cuprate super-
conductors. For the data that do not resolve an explicit k
dependence, the coherent-state solutions of the SU�4� model
�with properly adjusted parameters for effective interaction
strengths� can consistently describe SC gaps, pseudogaps
�PGs�, and the corresponding transition temperatures Tc and
T� in cuprates, as demonstrated in Ref. 7.

However, there are experimental indications for explicit k
dependence that are observed by experiments such as angle-
resolved photoemission spectroscopy �ARPES�.8,9 These
data probe electrons near the Fermi surface having particular
k directions. To describe k dependence in energy gaps, we
must extend our original SU�4� model by displaying explicit
k dependence in the gap equations and their corresponding
solutions. This is the goal of the present paper.

This paper is organized as follows. In Sec. II, we outline
the SU�4� background by pointing out the assumptions made
when the original k-independent SU�4� model was con-
structed. Sections III and IV are, respectively, devoted to the
presentation of the present k-dependent SU�4�k model and
the k-dependent gap equations obtained using the generalized
coherent-state method. We solve these gap equations in Sec.
V and give analytical solutions for the superconducting gap
and the pseudogap. Finally, we discuss some immediate con-
sequences of the SU�4�k model in Sec. VI, and a short sum-
mary is given in Sec. VII.

II. DYNAMICAL SYMMETRIES AND THE ORIGINAL
SU(4) MODEL

Interactions in dynamical symmetry theories are deter-
mined by symmetry groups.3 A general SU�4� Hamiltonian
with pairing and AF interactions can be written as10

H = H0 − Vd − V� − Vq, �1�

where H0 is the single-particle �sp� energy, and Vd, V�, and
Vq are the two-body spin-singlet pairing, spin-triplet pairing,
and AF interactions, respectively,

H0 = �
k

�knk, �2a�

Vd = �
k,k�

Gkk�
0 D†�k�D�k�� , �2b�

V� = �
k,k�

Gkk�
1

�� †�k� · �� �k�� , �2c�

Vq = �
k,k�

�kk�
0 Q� �k� · Q� �k�� . �2d�

The operators appearing in Eq. �2� can be expressed as

D†�k� = g�k�ck↑
† c−k↓

† , �3a�

�ij
† �k� = g�k�ck+q,i

† ck,j
† , �3b�

Qij�k� = ck+q,i
† ck,j , �3c�

where �ij
† �k� and Qij�k� are, respectively, tensor forms of

�� †�k� and Q� �k�. In Eq. �3�, ck,i
† creates an electron of mo-

mentum k and spin projection i, j=1 or 2 ��↑ or ↓�, and q
= �� ,� ,�� is an AF ordering vector. The d-wave form factor,

g�k� = g�kx,ky� = cos kx − cos ky , �4�

appears in Eqs. �3a� and �3b� because of strong experimental
evidence that in cuprates, the coherent pairs exhibit d-wave
orbital symmetry.11 Thus energy gaps generally are k depen-
dent,

�d�k� = �
k�

Gkk�
0 �D†�k�� , �5a�

���k� = �
k�

Gkk�
1 ��z

†�k��� , �5b�

�q�k� = �
k�

�kk�
0 �Qz�k��� . �5c�

The discussion to this point is general and no approxima-
tions have been made. In our original k-independent SU�4�
model,3–7 we have introduced approximations through the
following assumptions:

g�k� 	 sgn�g�k�� �6a�

�k 	 � �6b�

Gkk�
i 	 Gi �i = 0,1�, �kk�

0 	 �0. �6c�

Assumption �6a� removes the k dependence from form fac-
tors in the pair operators, and assumptions �6b� and �6c�,
respectively, replace the sp energy and interaction strengths
with k-independent constants. These approximations thus
lead to k-independent gaps

�d = G0�D†� �� = G1��z
†� �q = �0�Qz� , �7�

which are expressed in terms of the collective operators

D† = �
k

sgn�g�k��ck↑
† c−k↓

† ,

�ij
† = �

k
sgn�g�k��ck+q,i

† ck,j
† ,

Qij = �
k

ck+q,i
† ck,j . �8�

The preceding equations constitute the basis for discussions
in Refs. 3–7, and all our previous SU�4� results are obtained
within this framework. As most cuprate data presumably rep-
resent weighted averages over contributions of different k
components, the original SU�4� scheme works well. In Ref.
6, we derived and solved k-independent �but temperature and
hole-doping dependent� SU�4� gap equations and used the
results to construct generic gap and phase diagrams. We
compared the results with some representative cuprate data
in Ref. 7 and found that for data that do not resolve an
explicit k dependence, the coherent-state solutions of the
original SU�4� model can consistently describe SC gaps,
pseudogaps, and the corresponding transition temperatures
Tc and T�.
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III. k-DEPENDENT SU(4)k MODEL

As we have noted, there is experimental evidence for ex-
plicit k dependence of certain observables in the cuprates.
Although interpretation of some of the results remains some-
what controversial, their momentum-dependent nature is
clear. One example is the observation of Fermi arcs in
ARPES data:8,9 ARPES measurements suggest that the Fermi
surface is gapped out arcwise in the pseudogap region below
T�, indicating clear anisotropy of the PG in the k space.

In order to describe momentum dependence of energy
gaps, we must extend our original SU�4� model3–7 in a way
that restores the k dependence that is washed out by the
assumptions in Eq. �5� but preserves the SU�4� symmetry.
The replacement �6a� for the pair operators is a necessary
condition for preserving the SU�4� algebra,3 which is re-
quired physically because it imposes the non-double-
occupancy condition.5 Therefore, the only way to restore k
dependence in energy gaps but keep the SU�4� symmetry
�and its associated non-double-occupancy constraint� is to
modify Eqs. �6b� and �6c� to allow the sp energy � and the
interaction strengths to carry k dependence. The sp energy
term � is less important in this regard because it does not
contribute to energy gaps and transition temperature in our
formalism.6 We may thus employ it in the most general form
�k.

Without loss of generality, g�k� can be written as the
product of the absolute value and a sign

g�k� = 
g�k�
 � sgn�g�k�� . �9�

Therefore, the approximation �6a� implies that in our original
SU�4� model, we have assumed that the magnitude 
g�k�
 is
unity, regardless of k. �Note that this is also the condition
used to close the algebra of the SO�5� model.12,13� Instead of

g�k�
=1, we now introduce


g�k�
 	 �k = g0k	�
k� , �10�

where g0k is the maximum value of 
g�k�
. In Figs. 1 and 2,
we illustrate the associated geometry and definitions. In our
notation, k= �kx ,ky� is the electron momentum under the con-
straint

�� − kx�2 + �� − ky�2 = k̃2, �11�

where k̃ is the hole momentum with 
k as its azimuthal angle,
as shown in Fig. 1. In Eq. �10�, 	�
k� takes a value of unity
except in a narrow region around the nodal points �corre-
sponding to 
kx
= 
ky
 or 
k= �� /4 for the first Brillouin
zone; see Fig. 1�, where it quickly diminishes and vanishes
exactly at the nodal points. A possible mathematical expres-
sion could be of the Gaussian-type

	�
k� = 1 − e−��
k − �/4�/�
�2
with �
 � �/4,

where �
 measures the width of the Gaussian. With very
small �
, the exponential term has a negligible contribution
to the average, which ensures that the averaged 	�
k� is equal
to 1. The so-defined 	�
k� becomes exactly zero at 
k
= �� /4. Therefore, our pairing gaps have nodes at 
k
= �� /4, which agrees with experiments.

The behavior of 
g�k�
 is illustrated in Fig. 2. It is easy to
show that

g0k = 
1 − cos k̃
 . �12�

Thus, for the first Brillouin zone kx and ky can take values
from zero to �, while g0k changes from 0 to 2. �The assump-
tion 
g�k�
=1 in the original SU�4� model is thus equivalent
to taking an average of g0k over k.� Equation �10�, with its
explicit dependence on k, clearly improves on the original
SU�4� model for observables having a possible k depen-
dence.

With approximation �10� for 
g�k�
, the pairing interaction
strengths in Eq. �2� are

Gkk�
i = Gi

0�k�k� �i = 0,1� . �13�

The factor sgn�g�k�� in the product �9� remains unchanged in
the pair operators, which ensures preservation of the SU�4�
symmetry.

The k dependence of the AF interaction �kk� follows from
the nature of exchange interactions. The corresponding ma-
trix elements are proportional to the wave-function overlap
between the states, which are one-particle and one-hole
states with momenta �k+q ,k�. The d-wave symmetry in the
pair structure implies that the amplitude of a pair wave func-
tion with two electrons having momenta �k ,−k� in the back-
ground mean field of the SU�4� collective subspace is pro-

π -kx

k

π
-k

y

N
od
e

kx

ky

0 π

0

π

~

k

θk

FIG. 1. Geometry and definitions in the kx−ky plane, where k̃ is
hole momentum.

|g
(k
)|

kx π

0

g0k = 1 - cos k

π k-

π k- 2

(Node)

~

~

~

FIG. 2. The curve 
g�k�
 and its maximum value g0k=1−cos k̃
for a given momentum k= �kx ,ky� under constraint �11�.
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portional to g�k�. This means physically that the two
electrons in a pair favor aligning their momenta k along the
Cu-O bond direction �maximum of 
g�k�
� rather than along
the diagonal to the Cu-O bonds �nodal direction of g�k�; see
Fig. 1�. Since the wave function for momentum k+q differs
from that for k only by a sign,3 and a hole wave function is
the conjugate of a particle wave function, the amplitude of a
particle-hole wave function with momenta �k+q ,k� should
be very similar to that of a pair, and thus, proportional to
g�k�. Therefore, we can write

�kk� = �0gkgk�, �14�

where gk�
g�k�
. Note that for the gk factor in Eq. �14�, no
approximation similar to the one in Eq. �10� is necessary.
Explicitly, we mean here that gk= 
g�k�
= 
cos kx−cos ky
.

Inserting Eqs. �13� and �14� into Eq. �2�, we can rewrite
the Hamiltonian �1� as

H = �
k

�knk − G0
0�

k,k�

�k�k�D
†�k�D�k��

− G1
0�

k,k�

�k�k���
†�k� · �� �k�� − �0�

k,k�

gkgk�Q
� �k� · Q� �k�� .

�15�

The k-dependent Hamiltonian �15� possesses a �k�SU�4�k
symmetry with 15 k-dependent generators

D†�k� = D†�k� + D†�− k� ,

�� †�k� = �� †�k� + �� †�− k� ,

Q� �k� = Q� �k� + Q� �− k� ,

M�k� = M�k� + M�− k� ,

S� �k� = S��k� + S��− k� ,

where M�k� and S� �k� are, respectively, the charge and the
spin operators. For each k, the commutation relation among
generators, the structure of subgroup chains, and their corre-
sponding properties are analogous to those of the original
SU�4� group structure.3 We term this k-dependent
extension14 of the original SU�4� model as the SU�4�k model.

IV. k-DEPENDENT GAP EQUATIONS

In Sec. III, we demonstrated that with a better approxima-
tion to the absolute value of the form factor g�k�, it is pos-
sible to introduce explicit k dependence through a symmetry
structure that corresponds to a product of SU�4� groups, each
labeled by k. Therefore, the following discussions for gap
equations and their solutions for a given k are rather similar
to those in Ref. 6 for the k-independent SU�4� model.

By analogy with discussions in Appendix B of Ref. 6,
under the coherent-state �symmetry-constrained generalized
Hartree-Fock-Bogoliubov� approximation, one obtains for
the k-dependent case

2uk�vk���k� − � − �k��uk�
2 − vk�

2 � = 0 �16�

with

�k� = �k � �q�k� �k� = �d�k� � ���k�

and

�d�k� = G0
0�k �

k��0

�k��D
†�k��� ,

���k� = G1
0�k �

k��0

�k���z
†�k��� ,

�q�k� = �0gk �
k��0

gk��Qz�k��� .

k��0 in the above and following equations means kx��0 or
ky��0. Solving Eq. �16� gives k-dependent occupation prob-
abilities

uk�
2 =

1

2
�1 +

�k� − 

ek�
� vk�

2 =
1

2
�1 −

�k� − 

ek�
�

and a quasiparticle energy

ek� = ��k� − �2 + �k�
2 .

The gap equations in k space can then be obtained,

�d�k� =
G0

0�k

2 �
k��0

�k��wk�+�k�+ + wk�−�k�−� , �17a�

���k� =
G1

0�k

2 �
k��0

�k��wk�+�k�+ − wk�−�k�−� , �17b�

�q�k� =
�0gk

2 �
k��0

gk��wk�+��q�k�� + k�
� �

+ wk�−��q�k�� − k�
� �� , �17c�

− 2x =
2

�
�

k��0

�wk�+��q�k�� + k�
� � − wk�−��q�k�� − k�

� �� ,

�17d�

with

wk� =
Pk��T�

ek�

k� =  − �k,

Pk��T� = tanh� ek�

2kBT
� .

In Eq. �17d�, �=�k�0 is the maximum number of doped
holes �or doped electrons for electron-doped compounds�
that can form coherent pairs, assuming the normal state �at
half filling� to be the vacuum. x is the relative doping frac-
tion in the model.6 Positive x represents the case of hole
doping with x=0 corresponding to half filling �no doping�
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and x=1 to maximal hole doping. The true doping P is re-
lated to x by x�4P.6

The k-dependent gap equations �Eq. �17�� are coupled al-
gebraic equations. By solving these equations, one can in
principle obtain k-dependent �also temperature and hole-
doping dependent� energy gaps. However, general and exact
solutions are difficult because gaps for given k are related to
all other k points, which means that solutions at each k point
are not independent from the other k components. In Sec. V,
we show that one can obtain analytical solutions by applying
some approximations.

V. SOLUTIONS FOR k-DEPENDENT GAP EQUATIONS

We may greatly simplify the solution of Eq. �17� through
the following three steps. First, we replace the quantities in
the summations on the right-hand side of Eq. �17� with their
corresponding mean values,

�k� ⇒ �̄��� = + ,− ,q� k� ⇒ �̄,

wk� ⇒ w̄� �
P̄��T�

ē�

,

with

P̄��T� = tanh� ē�

2kBT
� ē� = ��̄ � �̄q�2 + �̄�

2 .

The functions �k and gk in the summations can then be sim-
plified as

�
k��0

�k� ⇒ �
k��0

ḡ0 =
�

2
ḡ0, �18�

�
k��0

gk� ⇒ �
k��0

ḡ =
�

2
ḡ . �19�

The second level of simplification is based on physical
considerations. Experimentally measured energy gaps are
dominated by contributions from near the Fermi surface.
Therefore, we assume that measured gaps may be approxi-

mated by their values at k̃=kf. Using this approximation and
the average values introduced in the first approximation step,
we can write for the gap equations of Eq. �17� evaluated at

k̃=kf,

�d�k� =
�

4
G0

0g0ḡ0	�
kf
��w̄+�̄+ + w̄−�̄−� , �20a�

���k� =
�

4
G1

0g0ḡ0	�
kf
��w̄+�̄+ − w̄−�̄−� , �20b�

�q�k� =
�

4
�0g0ḡ��
kf

��w̄+��̄q + �̄� + w̄−��̄q − �̄�� ,

�20c�

− 2x = w̄+��̄q + �̄� − w̄−��̄q − �̄� , �20d�

where g0�g0kf
and

��
kf
� � �g�k�

g0
� . �21�

Equation �20� are k-dependent gap equations constrained on
the Fermi surface through

�� − kx�2 + �� − ky�2 = kf
2. �22�

It can be shown that ��
kf
� is independent of 
kf
 to high

accuracy, and therefore, can be considered in later discus-
sions to be a function of azimuthal angle only.

In the third simplification step, we assume the average

values �̄� and �̄ to be proportional to the unknown quanti-
ties ���k� and k�, respectively, with a constant of proportion-
ality R,

�̄� = R���k� �� = + ,− ,q�, �̄ = Rk�, �23�

which implies that

ē� = Rek�. �24�

The parameter R serves as a renormalization factor that cor-
rects on average the errors caused by the approximation and
is determined by the fitting data. With Eq. �23�, Eq. �20� now
becomes

�d�k� =
�

4
G0	�
kf

��w̃+�+�k� + w̃−�−�k�� , �25a�

���k� =
�

4
G1	�
kf

��w̃+�+�k� − w̃−�−�k�� , �25b�

�q�k� =
�

4
�

��
kf
�

�̄
�w̃+��q�k� + k�� + w̃−��q�k� − k��� ,

�25c�

− 2x = w̃+��q�k� + k�� − w̃−��q�k� − k�� , �25d�

with

Gi = Gi
0g0ḡ0, � = �0g0�̄ḡ

and

w̃� =
P̃��T�

ek�

P̃��T� = tanh�Rek�

2kBT
� . �26�

In the above equations, �̄ is the average value of ��
kf
�.

The simplified gap Eq. �25� can now be solved analyti-
cally. They have the same structure as the gap equations
discussed in the k-independent SU�4� model,6 except that the
interaction strengths in the present case are k anisotropic.
Therefore, all the SU�4� formulas in Secs. III–VI of Ref. 6
remain valid, provided that the following replacements are
made for the singlet-pairing, triplet-pairing, and antiferro-
magnetic coupling strengths, respectively,
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G0 → G0	�
kf
�, G1 → G1	�
kf

�, � → ���
kf
�/�̄ .

�27�

For example, if we introduce the doping parameter x defined
in Sec. IIC of Ref. 6, the k-dependent critical hole-doping
fraction is �compare Eq. �23� of Ref. 6�

xq
 � xq�
kf
� =���
kf

�/�̄ − G0	�
kf
�

���
kf
�/�̄ − G1	�
kf

�
, �28�

and the T=0 energy gaps at the Fermi momentum kf for x
�xq
 are obtained as

�d�k� =
�

2
G0	�
kf

�x�xq

−1 − x� , �29a�

���k� =
�

2
G1	�
kf

�x�xq
 − x� , �29b�

�q�k� =
�

2
�

��
kf
�

�̄
�xq


−1 − x��xq
 − x� , �29c�

k� = −
�

2
��

��
kf
�

�̄
− G1	�
kf

��xq
�1 − xq
x� −
�

2
G1	�
kf

�x ,

�29d�

while for x�xq
 we obtain �q�k�=���k�=0 and

�d�k� =
�

2
G0	�
kf

�1 − x2 �30a�

k� = −
�

2
G0	�
kf

�x �30b�

for the solutions. The energy gaps obtained in Eqs. �29� and
�30� are k anisotropic. The pairing gaps have nodal points at
kx=ky, where 	�
kf

�=0. The pseudogap �q�k� is a function of
k by virtue of the factor ��
kf

� defined in Eq. �21�.
Because all SU�4� formulas in Secs. III–VI of Ref. 6 re-

main valid, it is easily proven that the PG closure tempera-
ture T� acquires the same g�k� dependence as the pseudogap,
and we obtain for the PG closure temperature

T��k� = �
��
kf

�

�̄
�

R�1 − x2�
4kB

. �31�

We do not expect a corresponding effect in the superconduct-
ing region because below Tc, the pairing gap opens and the
entire Fermi surface will be destroyed except at the nodal
points. We find a superconducting transition temperature

Tc�k� = G0	�
kf
��

Rx

4kB arctanh�x�
, �32�

which has no g�k� factor.

VI. DISCUSSIONS AND PREDICTIONS

Most experimental techniques do not resolve k and we
expect for those that transition temperatures are dominated

by contributions from near the Fermi surface �k̃=kf�, which
are averaged over all k directions. If one takes the average
over 
kf

, then

	�
kf
� → 1, ��
kf

�/�̄ → 1,

and the gap equations of the k-dependent SU�4�k model and
their solutions become identical to those obtained for the
original k-independent SU�4� model.6 Thus our original
SU�4� model predicts6,7 values of energy gaps and the corre-
sponding transition temperatures that are �perhaps weighted�
averages over k. These are relevant for comparison with ex-
periments that do not resolve k. However, the explicit ap-
pearance of the anisotropic factor ��
kf

� / �̄ in the gap solu-
tions of the SU�4�k model leads to some interesting
consequences. We note that although our following discus-
sions are made through the anisotropic factor ��
kf

� / �̄, its
relation with 	�
kf

� guarantees that the model still preserves
the d-wave nature and has nodes in the pairing gaps. In this
section we discuss three predictions following from the
present formalism that could have important implications for
experiments that detect explicitly k-dependent properties.

A. Two pseudogap closure temperatures: The maximum and
the averaged

The k-dependent PG closure temperature T��k� in Eq. �31�
differs from the k-averaged one derived in Eq. �49� of Ref. 6,

Tav
� = ��

R�1 − x2�
4kB

, �33�

by the factor ��
kf
� / �̄. We know that ��
kf

� and also T��k�
take their maximum values at the antinodal points, for ex-
ample,

�max�
kf
�

kf

=0,�/2 = 1

�see Figs. 1 and 2�. We can denote the maximum PG closure
temperature as Tmax

� . Thus, the SU�4�k model predicts two
PG closure temperatures that are related to each other
through

Tmax
� = Tav

� /�̄ . �34�

It is straightforward to evaluate the averaged � value by
integration. Noting that Eqs. �29a�–�29d� are restricted to x
�xq
, we can define the maximum allowed azimuthal angle

c through the condition x=xq
�
c�. We then have

�̄ =
2

�
�

0


c �g�k�
��
g0

�d
 . �35�

In the above calculation, we have used for the integrand
expression �21� for ��
kf

� and constraint �22�. The resulting
�̄ depends on the size of the Fermi surface 
kf
. Assuming an
isotropic hole Fermi surface, we have

kf
2 = 2��1 + P� .

Therefore, �̄ is essentially a hole-doping-dependent quantity.
In Fig. 3, we show the behavior of 1 / �̄ as a function of

SUN, GUIDRY, AND WU PHYSICAL REVIEW B 78, 174524 �2008�

174524-6



doping P, assuming coupling-strength parameters that are
characteristic of the cuprate superconductors. As one can see,
it has a nonlinear dependence on doping, taking the maxi-
mum value of 1.6 at very small dopings, falling rapidly be-
tween P=0.05 and 0.08, and decreasing continuously but
with a smaller rate until it reaches unity at the critical doping
P=0.18.

We thus obtain two distinct PG closure temperatures, Tav
�

and Tmax
� , having the same microscopic origin6,7 but differing

in the kinds of experimental observables for which they are
appropriate. The largest difference between the two is found
for small doping; they take similar values at large dopings,
becoming identical at the optimal doping point. In Ref. 7,
experimental values of Tc and T� �Ref. 15� that do not re-
solve k were compared to our theoretical Tc and Tav

� . In Fig.
4, we replot these values in green for Tc �with open triangles
for data and dotted curve for theory� and blue for Tav

� �with
open squares for data and solid curve for theory�. Above the
blue �solid� curve, we now add the maximum PG closure
temperatures Tmax

� in red �with open circles for data and
dashed curve for theory�. Because of the 1 / �̄ factor shown in
Fig. 3, the red �dashed� curve lies well above the blue �solid�
curve at low dopings. In Ref. 16, Campuzano et al. reported
their ARPES data �plotted as red circles in Fig. 4�. In the
underdoped regime it is clear that the results from Refs. 15
and 16 differ substantially. Because the ARPES experiment
typically detects k-dependent properties, we suggest that the
data from Ref. 16 actually measure Tmax

� , as predicted in the
present paper, while the data cited in Ref. 15 measure the
k-averaged Tav

� , as described in our earlier paper.7 We empha-
size that in this interpretation the two types of experiments
are seeing the same underlying physics, but the observations
differ because what is actually being measured differs in the
two cases.

B. Temperature-dependent Fermi arcs

The pseudogap closure temperature T��k� is anisotropic in
k. Combining Eqs. �31�, �33�, and �34�, we have

T��k� = Tmax
� ��
kf

� =
Tmax

�

g0

g�kf�
 , �36�

where the doping-dependent quantity Tmax
� is the maximum

value of T��k� in the antinodal direction, 
kf
=0 or � /2. For

an arbitrary temperature T�Tmax
� , the k-dependent

pseudogap closes when T=T��k�, which is equivalent to the
requirement that


cos kx − cos ky
 = g0�T/Tmax
� � �37�

upon substituting Eqs. �4� and �36�. This equation says that
the magnitude of the d-wave form factor �4� that expresses
the nodal structure11 in cuprate superconductors is propor-
tional to the scaled quantity T /Tmax

� with a proportionality
factor g0 that is related to the size of the Fermi surface.

Simultaneous solution of Eqs. �22� and �37� gives values
of kx and ky where the pseudogap closes at a given P and T.
Figure 5 illustrates the solution of Eqs. �22� and �37� graphi-
cally for several temperatures at fixed doping. The solution
of Eq. �37� is represented by the curves bounding the shaded
regions, and the solution of Eq. �22� is represented by the
Fermi-surface curves in each corner. The intersection of
these curves defines two simultaneous solutions in each of
the four quadrants that bound the surviving part of the Fermi
surface �heavier portions of the curves in Fig. 5�. In the
shaded portions of Fig. 5 the Fermi surface has been de-
stroyed by the pseudogap, leaving only a vestigial Fermi arc
between the shaded regions.

The solution in Fig. 5 represents a derivation of Fermi-arc
structure expected in the underdoped regime above Tc. Be-
low Tc, the Fermi surface is completely destroyed by the
opening of the pairing gap except at the nodal point since the
pairing gap has no ��
kf

� dependence �see Eq. �29��. We
emphasize that the calculations presented in Fig. 5 do not
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FIG. 3. The doping-dependent 1 / �̄ factor. The calculation em-
ploys Eq. �35� and utilizes realistic interaction strengths �, G0, and
G1 taken from Ref. 7 with the pairing onset at P=0.05.
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FIG. 4. �Color online� SU�4� cuprate phase diagram compared
with data. Strengths of the AF and singlet-pairing correlations were
determined in Ref. 7 by global fits to cuprate data. The PG tem-
perature is T� and the SC transition temperature is Tc. The AF
correlations vanish, leaving a pure singlet d-wave condensate above
the critical doping Pq. Dominant correlations in each region are
indicted by italic labels. Data in green �open triangles� and blue
�open squares� are taken from Ref. 15 and those in red �open
circles� are from Ref. 16 �arrows indicate that the point is a lower
limit�.
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involve any additional parameters as long as the PG closure
temperatures have been calculated �presented in Fig. 4�.

Kanigel et al.9 reported from their ARPES experiment
arclengths for slightly underdoped Bi2212. A direct reading
of the Fermi arclength from Fig. 5 permits us to compare it
quantitatively with the Kanigel data. Details will be pub-
lished elsewhere.17

C. Complete suppression of antiferromagnetism: Pure
superconducting states in underdoped compounds

As we have discussed extensively in Ref. 6, the antiferro-
magnetic correlation that plays a key role in understanding
underdoped cuprates is completely suppressed at and beyond
the critical doping point xq. A pure �d wave� BCS supercon-
ducting state occurs at zero temperature in the overdoped
portion of the phase diagram. We now show that a similar
situation can also occur in certain k windows in the under-
doped regime, in which AF correlation is completely sup-
pressed and a pure SC state emerges.

This is another interesting consequence of the SU�4�k
model due to the anisotropic factor ��
kf

� / �̄. The critical
doping point defined in Eq. �28�, which is constant in the
k-averaged SU�4� model,6 is now a function of momentum
direction 
kf

because of the anisotropic factor ��
kf
� / �̄. Con-

sequently, for each given doping x there always exists a win-
dow in the momentum azimuthal angle, 
c�
kf

� �� /2
−
c�, and centering at the nodal point � /4 within which the
AF correlation vanishes and only the pairing gap �d exists.
This follows because inside the window xq
�x; therefore,
solution �29� is not permitted but solution �30� is. The critical
angle 
c is determined by the condition xq
�
c�=x. Figure 6
illustrates the situation.

Because ��
kf
� / �̄, and thus xq
, is a doping-dependent

quantity, the above phenomenon depends on doping. The se-
quential figures, plotted for four different dopings in Fig. 7,
show the behavior of the energy gaps as functions of the
momentum direction. Whenever

x = xq =� − G0

� − G1
,


c=0, which means that there is no momentum space avail-
able to �q and ��, and the AF correlations and triplet-pairing

states are completely suppressed. Therefore, for x�xq the
system can only be in a pure superconducting state at zero
temperature. It can be seen that larger doping x implies a
smaller critical angle 
c, and thus, a wider pairing window,
and that the width of the pairing window decreases rapidly
toward zero as the doping goes to zero.

In the original SU�4� model, we found that the critical
doping point defines a natural boundary �quantum phase
transition� between underdoped and overdoped regimes that
have qualitatively different wave functions.6 We termed the
underdoped superconducting regime the AF+SC phase �an-
tiferromagnetic superconducting phase�; it is characterized
by having all gaps nonzero but is dominated by AF and SC
gaps. The present extension to the SU�4�k model reveals the
additional feature that in this AF+SC phase, the gaps are
highly anisotropic in the momentum space, implying the pos-
sibility of a pure SC window around the nodal points even in
the underdoped regime. The proposed existence of these pure
superconducting windows may have considerable implica-
tion for the nature of the Fermi surface at low doping, for the
Nernst effect, and for the relationship of impurities to inho-
mogeneities in the underdoped region. These deserve further
investigation.

T /T *= 1.0 T /T *= 0.7 T /T *= 0.4

ky

kx kx kx

ky ky

T /T *= 0.1

kx

ky

FIG. 5. �Color online� Construction of Fermi arcs for doping P=0.15 and values of T /Tmax
� decreasing left to right. The ranges of kx and

ky are from −� to � and dashed lines indicate nodes. Hole Fermi surfaces in the absence of gaps are illustrated by full solid arcs in each
corner. For T�Tmax

� a full Fermi surface exists; for T�Tmax
� , opening of the pseudogap destroys Fermi surfaces in the shaded regions �dotted

lines�, leaving arcs �solid lines� centered on the nodal lines. These arcs have absolute lengths that depend on P and T but relative lengths that
depend only very weakly on P and are determined almost entirely by the ratio T /Tmax

� . The sizes of the shaded regions grow with decreasing
T, so at very low temperature almost all of the Fermi surface becomes gapped and the Fermi arcs shrink to the nodal points as T /Tmax

�

→0.
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FIG. 6. The anisotropic factor ��
�. In this figure, 
c1=
c, 
c2

=� /2−
c, and 
c is determined by xq
�
c�=x. The value of ��
� at
the critical angle 
c is denoted by ��
c���c�x�, where �c�x� is a
monotonically increasing function of doping x that becomes equal
to unity when x=xq.
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The above analysis has assumed T=0 for simplicity, but
the basic picture should be valid also in the case with non-
zero temperature. The formulation and solution of the gap
equations described in this paper can be extended to finite
temperature using the methods described in Ref. 7. While of
considerable practical importance, this extension does not
involve conceptually different ideas and will be deferred to a
later paper.

VII. SUMMARY

In this paper, we have extended the SU�4� model for
high-Tc superconductivity to include explicit momentum de-
pendence in observables. To do so, we have started from a
general SU�4� Hamiltonian and introduced a better approxi-
mation for the d-wave form factor in the pair operators. This
leads to the present SU�4�k model, which retains explicit k
dependence while preserving SU�4� symmetry. We have
solved the gap equations derived from the SU�4�k coherent
states with some plausible approximations, obtaining analyti-
cal solutions for k-dependent superconducting gaps,
pseudogaps, and their transition temperatures Tc and T�. The
present SU�4�k model reduces to the original SU�4� model
for observables that are averaged over all possible k direc-
tions. Therefore we propose that the original SU�4� model
describes the averaged features and thermal properties of cu-
prates, while the present SU�4�k model presented in this pa-
per extends this description to detailed anisotropic properties
in the k space. The present results have been obtained for
zero temperature but the formalism presented here may be
extended to finite temperature in a manner similar to the
extension of the k-averaged SU�4� model.

Because of an anisotropic factor ��
kf
� / �̄ in the analytical

gap solutions, the cuprate phase structure in the underdoped
regime becomes even richer than that for k-averaged obser-
vations. We have discussed three immediate consequences
that emerge in the present SU�4�k model.

�1� We have suggested the possibility of two distinct and
measurable pseudogap closure temperatures: the maximum

and the averaged. In the coherent-state SU�4� theory the
pseudogap could be interpreted either as arising from com-
peting AF and SC degrees of freedom, or alternatively as
fluctuations of pairing subject to SU�4� constraints.6,7 The
proposed Tav

� and Tmax
� share the same microscopic origin but

differ from each other by a doping-dependent factor. The
temperature Tav

� represents PG closure temperatures that are
averages over k, while Tmax

� , which is generally higher than
Tav

� , represents the pseudogap temperature expected if one
retains explicit k dependence. Experimentally, then, we pre-
dict that Tav

� is the pseudogap temperature that should be
measured in experiments that do not resolve k explicitly, but
�the generally higher� Tmax

� is the expected measured
pseudogap temperature for experiments such as ARPES that
resolve k.

�2� We have provided a theoretical framework to under-
stand ARPES Fermi-arc data. Using two analytical equa-
tions, we have obtained a solution for the T /T�-dependent
Fermi arclengths that is in quantitative agreement with exist-
ing measurements. The essence of this result is the appear-
ance of the factor ��
� in the PG closure temperature that has
been derived in Eq. �31�.

�3� We have predicted the existence of doping-dependent
windows in the momentum space where antiferromagnetic
correlation is completely suppressed in the underdoped re-
gime. Without AF competition, it is possible for pure super-
conducting states to emerge in these windows. Thus, we find
that pure BCS-type superconducting states can exist not only
in conventional superconductors or in overdoped cuprate
high-Tc superconductors �where such behavior is well estab-
lished� but also in localized islands even in underdoped cu-
prate superconductors. It is of interest whether this prediction
is related to the recent observation of small pockets of well-
defined Fermi surface in underdoped cuprate superconduct-
ors.

Some of these predictions �for example, the two tempera-
ture scales for pseudogap behavior� have the potential to rec-
oncile apparent discrepancies in existing data. All make pre-
dictions that can be tested in experiments capable of
resolving k-dependent behavior.
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Finally, we note that the recent discovery of superconduc-
tivity in layered iron-based transition-metal oxypnictides18

has generated a new wave of research interest. In place of
copper and oxygen, the new compounds contain iron and
arsenic, and the highest critical temperature for them has
already reached 55 K.19 It has been demonstrated in neutron-
scattering experiments20 that, similar to high-Tc copper ox-
ides, superconductivity in these iron-based materials is likely
competing strongly with antiferromagnetic degrees of free-
dom. It will be of considerable interest to see whether ap-

proaches similar to the one presented in this paper, or other
models capable of handling multiple competing degrees of
freedom in strongly correlated systems on an equal footing,
can explain these new high-temperature superconductors and
their relationship to the old ones.21 In particular, we note that
what is already known about the iron-based superconductors
suggests that k-dependent phenomena of the sort described
in this paper should also be observable in these new super-
conductors.
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